Test ID: NMEM Red Blood Cell Membrane Disorders Gene Panel, Next-Generation Sequencing, Varies
Ordering Guidance
Multiple hematology gene panels are available. For more information see NHHA and Subpanel Comparison Gene List.
Customization of this panel and/or single gene analysis for any gene present on this panel is available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.
Targeted testing for familial variants (also called site-specific or known variants testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.
Additional Testing Requirements
This test is best interpreted in the context of protein studies and peripheral blood findings. Prior to sending this test, Coombs testing should be negative and consider evaluating a peripheral blood smear. This can be provided by ordering RBCME / Red Blood Cell Membrane Evaluation, Blood. Fill out the information sheet and indicate that a next-generation sequencing test was also ordered. Additionally, providing complete blood cell count data and clinical notes will allow more precise interpretation of results.
Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.
Necessary Information
1. Metabolic Hematology Next-Generation Sequencing (NGS) Patient Information is required. Testing may proceed without the patient information; however, the information aids in providing a more thorough interpretation. Ordering providers are strongly encouraged to fill out the form and send with the specimen.
2. If form not provided, include the following information with the test request: clinical diagnosis, pertinent clinical history (ie, complete blood cell count results and relevant clinical notes), and differentials based on clinical or morphologic presentation.
Specimen Required
Specimen Type: Whole blood
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.
Container/Tube:
Preferred: Lavender top (EDTA)
Acceptable: Yellow top (ACD)
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send whole blood specimen in original tube. Do not aliquot.
Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated
Forms
1. Metabolic Hematology Next-Generation Sequencing (NGS) Patient Information (T816) is required.
2. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing (Spanish) (T826)
3. If not ordering electronically, complete, print, and send a Benign Hematology Test Request (T755)with the specimen.
Useful For
Providing a comprehensive genetic evaluation for patients with a personal or family history suggestive of a red blood cell (RBC) membrane disorder
Second-tier testing for patients in whom previous targeted gene variant analyses were negative for a specific RBC membrane disorder
Establishing a diagnosis of a hereditary RBC membrane disorder, allowing for appropriate management and surveillance of disease features based on the gene involved, especially if splenectomy is a consideration(5)
Identifying variants within genes associated with phenotypic severity, allowing for predictive testing and further genetic counseling
Special Instructions
Method Name
Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing
Reporting Name
RBC Membrane Sequencing, NGSSpecimen Type
VariesSpecimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Varies | Varies |
Clinical Information
Next-generation sequencing is a methodology that can interrogate large regions of genomic DNA in a single assay. The presence and pattern of gene variants can provide critical diagnostic, prognostic, and therapeutic information for managing physicians.
This panel aids in the diagnosis and genetic counseling of individuals with red blood cell (RBC) membrane disorders, including hereditary spherocytosis, hereditary elliptocytosis, hereditary pyropoikilocytosis, Southeast Asian ovalocytosis, hereditary stomatocytosis (both overhydrated and dehydrated/hereditary xerocytosis subtypes), and cryohydrocytosis.(1-5)
The functional red cell membrane is composed of a cholesterol and phospholipid bilayer anchored by integral proteins to an elastic cytoskeletal network. These interactions form the shape, deformability, and proper ion balance of the cell. Abnormalities in these moieties result in RBC membrane disorders. Hereditary spherocytosis is a common membrane disorder that can be present in all ethnic groups. It is usually associated with visible spherocytes on the peripheral blood smear and can be associated with variable clinical features of hemolysis ranging from mild to severe. Paradoxically, erythrocytosis can occur after splenectomy. Hereditary elliptocytosis (HE) is another fairly common and clinically variable disorder that can range from normal RBC indices, in the large majority of cases, to a minor subset of patients with moderate to severe anemia. Common hereditary elliptocytosis is characterized by the presence of elliptocytes on the peripheral blood smear and the absence of anemia. Variants associated with HE have been reported in widely variable ethnicities with greater prevalence in populations overlapping the malaria belt. Hereditary pyropoikilocytosis is now best classified as a severe form of hereditary elliptocytosis. It is uncommon and presents in early childhood as a severe hemolytic anemia. These disorders are associated with marked poikilocytosis on the peripheral blood smear.(1,2) Hereditary stomatocytosis is an RBC membrane permeability disorder that can manifest as the more common dehydrated hereditary stomatocytosis (DHSt), also known as hereditary xerocytosis (HX), and the rarer overhydrated hereditary stomatocytosis (OHSt) subtypes. These disorders are important to confirm or exclude as splenectomy has been associated with an increased risk for serious venous thrombosis and thromboembolism events and is contraindicated in published guidelines.(5) DHSt/HX manifests variably as mild to compensated anemia to some cases with increased hemoglobin levels. Some patients are asymptomatic, others show hemolysis after even nontraumatic exercise sessions. Others display perinatal edema and susceptibility to iron overload. DHSt/HX is associated with pseudohyperkalemia, increased MCHC (mean corpuscular hemoglobin concentration), and decreased osmotic fragility due to relative dehydration of the red blood cell. OHSt is similarly associated with anemia of variably severity but is associated with increased osmotic fragility due to a relatively overhydrated steady state.
Reference Values
An interpretive report will be provided.
Interpretation
All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(6) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.
Clinical Reference
1. Gallagher PG. Abnormalities of the erythrocyte membrane. Pediatr Clin North Am. 2013;60(6):1349-1362. doi:10.1016/j.pcl.2013.09.001
2. Barcellini W, Bianchi P, Fermo E, et al. Hereditary red cell membrane defects: diagnostic and clinical aspects. Blood Transfus. 2011;9(3):274-277. doi:10.2450/2011.0086-10
3. Zarychanski R, Schulz VP, Houston BL, et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood. 2012;120(9):1908-1915. doi:10.1182/blood-2012-04-422253
4. Andolfo I, Russo R, Gambale A, Iolascon A. Hereditary stomatocytosis: an underdiagnosed condition. Am J Hematol. 2018;93(1):107-121. doi:10.1002/ajh.24929
5. Iolascon A, Andolfo I, Barcellini W, et al. Recommendations regarding splenectomy in hereditary hemolytic anemias. Haematologica. 2017;102(8):1304-1313. doi:10.3324/haematol.2016.161166
6. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424
Day(s) Performed
Varies
Report Available
28 to 42 daysTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
81405
81479
81479 (if appropriate for government payers)
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
NMEM | RBC Membrane Sequencing, NGS | 103738-1 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
619062 | Test Description | 62364-5 |
619063 | Specimen | 31208-2 |
619064 | Source | 31208-2 |
619065 | Result Summary | 50397-9 |
619066 | Result | 82939-0 |
619067 | Interpretation | 59465-5 |
619068 | Additional Results | 82939-0 |
619069 | Resources | 99622-3 |
619070 | Additional Information | 48767-8 |
619071 | Method | 85069-3 |
619072 | Genes Analyzed | 82939-0 |
619073 | Disclaimer | 62364-5 |
619074 | Released By | 18771-6 |
mml-benign-hematology-disorders